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A theoretical model based on the autoionization and characteristic decay processes following electron impact
ionization of a core electron in solids that has previously been used in calculating electron-energy-loss spectra
of transition metals near the 3p-excitation edge has been extended to the 2p-excitation edge for 21Sc through
27Ni as well. In the first set of calculations, magnetic effects were ignored and the relative scattering intensity
was formulated in terms of the electrostatic interaction U�p ,d� between the 3p and 3d electrons of the
intermediate resonant configuration state p5dn+1, using many-body perturbation theory that led to a generalized
Fano-type formula for the intensity profiles. In the second set of calculations in which magnetic effects were
included as well, an analysis based on the Bethe-Born formalism of inelastic scattering of electrons on atoms
was used. The nature of the relative magnitudes of U�p ,d� and the spin-orbit parameters �3p and �3d and the
localized nature of the 3p state necessitated the diagonalization of the intermediate configuration state p5dn+1

to determine the multiplet splitting and their corresponding intensities in the LS-coupling limit using fractional
parentage scheme. The nonrelativistic multiconfiguration Hartree-Fock �MCHF� code was used in determining
the ground and continuum state wave functions, and the itinerant 3d states in the solid were approximated with
an atomic MCHF-wave function. The outline above is applied to the 2p-excitation edge, except that because of
the relative magnitudes of U�p ,d�, �2p, and �3d, it is found that LK coupling is suitable for Sc, Ti, and V, while
jK coupling is appropriate for Cr to Ni when it comes to the diagonalization of the configuration p5dn+1 to
determine the multiplet splitting and their associated scattering intensities. In the dipole approximation, the
scattering intensities separate into two distinct manifolds that arise from the p3/2 and p1/2 states. The branching
ratios of the white lines are extracted from the spectra and compared with x-ray-absorption spectra.
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I. INTRODUCTION

Because electron-energy-loss spectroscopy �EELS� in re-
flection mode at intermediate energies �200–2000 eV� probes
a veneer of atoms at solid surfaces, it is a useful tool of
practical importance in the study of the surface properties of
materials. To study the response of electrons using such an
external probe from the theoretical standpoint usually re-
quires the knowledge of the surface or the bulk frequency-
dependent dielectric function.1–4 In lieu of the dielectric
function, one can also use inelastic scattering of electrons by
atoms in the first Born approximation to obtain the scattering
cross section.5–8 In the case of the 3d-transition metals, at
energies that involve the 2p-core electron, the scattering
cross section will be determined essentially by matrix ele-
ments involving the 2p→3p transitions. In the solid state,
the itinerant 3d-states should in principle be represented by
Bloch waves like in the tight-binding approximation. But
because the transition matrix elements involve the tightly
bound 2p orbitals, not much accuracy is lost if the 3d-Bloch
state is approximated by an atomic 3d orbital. From this
perspective the scattering of the electrons by the metallic
surface may be considered as inelastic scattering of electrons
by atoms using the Bethe-Born theory. This is the approach
taken in this paper.

The question of selection rules in L-shell excitations has
been addressed extensively in earlier publications. On the
one hand, using a model based on analytic representation of
both the core and excited electrons, Saldin and Ueda9 me-
ticulously discussed the validity of the dipole approximation
in electron-energy-loss spectroscopy due to L-shell excita-

tions of chemical elements with Z�50. They found that the
dipole approximation is likely to be good for primary ener-
gies of the order of 100 keV for all the L edges of all the
elements studied on the basis of momentum transfer consid-
erations. The use of extended energy loss fine structure �EE-
LFS� technique for studying radial distribution functions for
iron and carbidic iron supports the viewpoint that dipole
transitions are the most significant contributions in L-shell
spectra.10 On the other hand, theoretical calculations based
on inelastic scattering of fast electrons by atoms in the limit
of the first Born approximation indicate that nondipole tran-
sitions become significant in situations where there is a high
density of dipole-forbidden states in the near-threshold
region.6 Such cases of optical forbidden transitions have
been reported by a number of workers.11–19 The purpose of
this paper is twofold. The first is to discuss the validity of the
dipole approximation in resonance L-shell excitation spectra
specific to the 3d transition metals �TMs�. The second is to
see if there is any trend in resonance peaks as a function of
the atomic number Z in going from Sc to Ni.

II. FORMULATION WITH ONLY ELECTROSTATIC
INTERACTIONS

The main results are contained in Refs. 8 and 20. In par-
ticular, Fig. 1 is the set of perturbation diagrams used in
arriving at the results in the treatment of the 3p-excitation
edge.8 It is reproduced here to allow for the identification of
interaction matrix elements and their associated self-energy
expressions upon which the Fano and other parameters de-
fined in the paper were based. This means transporting the
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results from the formulation there literatim except wherever
the 3p orbital appears it is replaced with the 2p orbital. As
presented there, the main result of the formulation is the total
scattering intensity made up of autoionizing and characteris-
tic decay components given by

I�E� � �v�E�2R�E� ,

R�E� = ���� + q�
�2 + 1

+
��q��� + ���
�� + ���2 + 1

�2

+ ��2 + ��q − � + 1

�2 + 1

+
��q��� + ��� − ��

�� + ���2 + 1
�2

. �1�

We reiterate in the above and what follows that any param-
eter or variable without a prime derives from the ring or
bubble diagrams. A parameter with a prime is associated

with the ladder diagrams, while a parameter with a double
prime is connected with the characteristic decay channel.

In Eq. �1�, q and q� are Fano asymmetric line parameters
for the respective autoionizing ring and ladder diagrams de-
fined in terms of Coulomb interactions, and are given by

q�E� = −
Re V�D�E�
Im V�D�E�

, V�D�E� = v�D + � v�nvnD

En − E − i�
,

�2�

and

q��E� = −
Re V�D� �E�
Im V�D� �E�

, V�D� �E� = �
n

v�n� vnD�

En − E − i�
, �3�

while � and �� are the corresponding Fano reduced energy
parameters given by

��E� =
Re�ED − SD�E� − SD� �E��
Im�ED − SD�E� − SD� �E��

, �4�

and

���E� =
Re�ED� − SD� �E� − SD� �E��
Im�ED� − SD� �E� − SD� �E��

, �5�

with

En = Enf + E�d − E3d, En� = Enf , �6�

and

ED = E�d + E3d − E2p, ED� = E3d + E3d − E2p. �7�

In Eqs. �4� and �5�, SD�E� and SD� �E� are the interacting
self-energies for the autoionizing decay channel for the ring
and ladder diagrams, respectively, while SD� �E� is the self-
energy for the characteristic decay channel. These are de-
fined in terms of the bare Coulomb interaction matrix ele-
ments as

SD�E� = �
n

�vDn�2

En − E − i�
, En = Enf + E�d − E3d, �8�

SD� �E� = �
n

�vDn� �2

En� − E − i�
, En� = Enf , �9�

and

SD� �E� = �
n

�vn��
2

En� − E − i�
, En� = Enf − E3d − E3d. �10�

Finally, the parameters � and �� that appear in Eq. �1� are
defined in terms of the bare Coulomb interactions as

� =
2	�vDE�2

2	��vDE�2 + �vDE� �2�
, �� =

2	�vDE� �2

2	��vDE� �2 + �vE��2�
,

�11�

with
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FIG. 1. Amplitude diagrams made up of �a� the basic excitation
amplitude; ��b� and �d�–�h�� the resonant contributions from the ring
diagrams; and ��c� and �i�–�k�� the resonant contributions from lad-
der diagrams.
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�vDE�2 = �
n

�vDn�2��E − En�,

�vDE� �2 = �
n

�vDn� �2��E − En��,

�vE��2 = �
n

�vn��
2��E − En�� . �12�

The explicit Coulomb interactions that appear in Eqs.
�1�–�3� and in Eqs. �8�–�12� are given in terms of Slater
integrals as

v�E = 	6R1�3d3d;Ef2p� + �2	21/7�R3�3d3d;Ef2p� ,

�13�

�vDn�2 = 4R1�3d3d;nf2p�2 + �24/49�R3�3d3d;nf2p�2,

�14�

�vDn� �2 = �14/15�R1�3d3d;nf2p�2

− �24/175�R1�3d3d;nf2p�R3�3d3d;nf2p�

+ �96/1225�R3�3d3d;nf2p�2, �15�

and

�vn��
2 = �34/15�R1�3d3d;nf2p�2

− �8/35�R1�3d3d;nf2p�R3�3d3d;nf2p�

+ �16/35�R3�3d3d;nf2p�2. �16�

Note that E�d
E3d, and this makes En=En�. We also note that
in Eq. �1�, ��+��� replaces ��−��� in the original
analysis.20 This is because ��=�−�� was so defined to
make ��
0 for La and Ce. For the TMs, we have to inter-
change the roles of � and ��, and instead set

�� = �� − � =
Re�ED� − SD� �E� − SD� �E� − E�

	��vDE� �2 + �vE��2�

−
Re�ED − SD�E� − SD� �E� − E�

	��vDE�2 + �vE��2�
. �17�

In consonance with the approximations used in Sec. III for
the computation of the multiplet energies in which the in-
traelectrostatic interactions of the 3dn electrons of the inter-
mediate 2p53dn+1 are neglected, we set ��=0 in Eq. �1� to
exclude characteristic contributions yielding the autoionizing
scattering intensity

RA�E� = � �� + �q�2 + �� − 1�2

�2 + 1
� . �18�

The computational description of the parameters that ap-
pear in Eqs. �2�–�17� is pretty much the same as has been
described in the 3p-excitation case8 if the 3p orbital is
swapped for the present 2p situation in the MCHF and CMCHF

codes. Also all the quadratic interaction functions used in the
computation of the principal value integrals fit excellently to
a logarithmic-normal function and have accordingly been ob-
tained using MATHEMATICA’s adaptive quadrature that pro-
duces the same numerical results as the quadrature described
in the 3p-excitation case.8 The evaluated parameters are
found in Table I, and the results of the calculation for the
expression R�E� are shown in Fig. 2.

III. FORMULATION INCLUDING MAGNETIC
INTERACTIONS

A. Energy matrices

The reaction equation of the scattering process is

E + p6dn → � + p5dn+1. �19�

The diagonalization of the p5dn+1 resonant intermediate con-
figuration should be treated differently for the 2p and 3p
electrons. In the 3p case, because the 3p and 3d orbitals
overlap significantly, the 3p hole is expected to interact
strongly with the dn electrons of the ground state, and it was
necessary to consider an antisymmetrized wave function in
which the dn+1 electrons were treated on equal footing
through the use of the fractional parentage scheme. In the
present 2p case, however, since the 2p hole is more localized
than the d orbital, the dn electrons of the ground configura-
tion may be neglected, and the interaction between the 2p
hole and the excited optical d electron is expected to domi-
nate the spectrum. This means that the diagonalization of the
p5dn+1 configuration essentially is that of the 2p3d electron-
hole, namely, a two-particle configuration nlsn�l�s�, where
nls�1�→2p, and n�l�s��2�→3d. The next question is the
type of coupling to employ. Following Cowan,21 for the situ-
ation in which

�r12
−1�dir 
 hso�1�, hso�2�, hso�1� 
 �r12

−1�exch, �20�

the quantum numbers specified by L�K�J of the coupled state
���ll��L ,s�K ,s� ,J� are good quantum numbers. On the other
hand, in situations whereby

TABLE I. Summary of parameters used in calculating the relative intensities as described in the text.

Sc Ti V Cr Mn Fe Co Ni

�� 0.18478 0.18254 0.17464 0.19917 0.18882 0.18785 0.18117 0.18307

� 0.63519 0.63128 0.59983 0.64676 0.64125 0.65133 0.59999 0.64141

q� 2.2599 2.2000 1.7368 1.5576 1.4473 1.5474 1.5227 1.5471

q −53.097 −49.248 −32.093 −24.358 −22.989 −26.918 −29.654 −27.737

�� �eV� 4367.27 3955.34 2639.21 1560.410 1942.170 2248.53 1766.93 2004.91
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hso�1� � �r12
−1�dir 
 �r12

−1�exch 
 hso�2� , �21�

the quantum numbers specified by �jK�J of the coupled state
���ls� j , l��K ,s� ,J� are good quantum numbers. The multiplet
energies of the nln�l� configuration in LK coupling are given
by

�E�L�K�J� = 
�Edir�L�K�J� − �Eexch�L�K�J� + �Eso
nl�L�K�J�

+ �Eso
n�l��L�K�J�� . �22�

The corresponding multiplet energies of the nln�l� configu-
ration in jK coupling are given by

�E��jK�J� = 
�Edir��jK�J� − �Eexch��jK�J� + �Eso
nl��jK�J�

+ �Eso
n�l���jK�J�� . �23�

The explicit expressions for �Edir, �Eexch, �Eso
nl , and �so

n�l� in
LK- and jK-couplings are left to the Appendix. The spin-
orbit and Slater radial integrals used in the diagonalization of
the energy matrices are found in Table II. We see from these
values that the condition stated in Eq. �20� applies to Sc, Ti,
and V, while the condition stated in Eq. �21� applies to Cr to
Ni. Accordingly, the LK-coupling scheme is used for Sc, Ti,
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FIG. 2. �Color online� The relative intensities
�arbitrary units� for the TMs.

TABLE II. The 2p and 3d spin-orbit parameters, and Slater radial integrals used in the diagonalization of
the multiplet energy matrices. � is the total autoionizing broadening width comprising ring and ladder
diagram contributions from Sec. II using Eq. �30�. All energies are in electron volts �eV�.

Sc Ti V Cr Mn Fe Co Ni

�2p 2.83 3.53 4.35 5.31 6.41 7.68 9.13 10.77

�3d 0.01 0.02 0.02 0.03 0.04 0.05 0.07 0.08

F2�2p ,3d� 3.13 3.85 4.45 4.36 5.56 6.01 6.48 6.96

G1�2p ,3d� 1.97 2.68 3.01 2.96 3.92 4.30 4.70 5.10

G3�2p ,3d� 1.12 1.43 1.70 1.68 2.22 2.44 2.67 2.90

� 0.21 0.29 0.42 0.66 0.89 0.83 0.82 0.96
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and V, while the jK-coupling scheme is used for Cr to Ni in
the calculation of the multiplet energies and transition ampli-
tudes.

B. Excitation amplitudes

Figure 3 is the amplitude diagram in LK coupling for Sc,
Ti, and V that evaluates to the expression

a�L,K,J� = �K,J/L�1/2 
 �d, f ,d,p�1/2�
k

Rk�Ef2p;�d3d�


�d k f

0 0 0
��d k p

0 0 0
���k,L� , �24�

where �a ,b /c , . . .�= �2a+1��2b+1� / �2c+1�¯ in the above
and what follows.

Figure 4 is the amplitude diagram in jK coupling for Cr to
Ni. The diagram evaluates to the expression

b�j,K,J� = �j,K,J�1/2 
 �d, f ,d,p�1/2�
k

Rk�Ef2p;�d3d�


�d k f

0 0 0
��d k p

0 0 0
��k sp K

j d p
� . �25�

Following the Bethe-Born analysis of the inelastic elec-
tron scattering on atoms presented in Ref. 5 and recapitulated
in Ref. 8, the relative scattering cross section for 2p→3d
transitions is essentially determined by the correlation part of
the atomic form factor given by

FBorn
corr �Q,�� = 1 − W�Q,���

�

A���,E�
E� − � − i�

, �26�

where A�→a�L ,K ,J� for Sc, Ti, and V, and A�→b�j ,K ,J�
for Cr to Ni, and the radial weighted integrated spherical
Bessel function W�Q ,�� is given by

W�Q,�� = �
�
� drP3d�r�j��Qr�


 P2p�r�/�
�
� drP�d�r�j��Qr�P2p�r� . �27�

In the above, j��Qr� is the spherical Bessel function of inte-
gral order �, and Q is the momentum transfer of the imping-
ing electron to the atom. In the numerical calculations pre-
sented here, we have taken �d to be 3d making W�Q ,��=1,
and hence, rendering the correlation part of the of the atomic
form factor to become independent of the momentum trans-
fer Q. Under these conditions, the scattering cross section
may be represented by the dimensionless relative intensity

RB��� = �FBorn
corr �Q,���2 = �1 + �

�

A��E�
� − �E� + i��

�2

.

�28�

In Eq. �28� above, � is the electron-energy-loss parameter in
the sense as used in Sec. II relative to the 2p→3d excitation
and defined by

� = E − E3d − E3d + E2p − Re�Sd�E�� , �29�

while �E� are the multiplet energies given in Eqs. �22� and
�23� and �� is the total autoionizing broadening width given
by

���E� = 2	��vDE� �2 + �vDE�2� . �30�

The multiplet intensities are shown in Fig. 5. Both A��E�
and ���E� are evaluated at the peak values of
R1,3�Ef2p ;3d3d� while ���E� is evaluated at the 3d→2p
excitation energy with the results in Table II. Figure 6 shows
representative distribution of these radial integrals for Sc, Cr,
and Ni. We observe that the peak values increase in magni-
tude and the distribution broadens gradually in going from
Sc to Ni.

In the radial integral Rk�Ef2p ;3d3d�, on the basis that
R3�R1 we may neglect the k=3 contributions and retain
only the k=1 contributions. This would lead to only J=1
contributions in the excitation amplitudes in both the LKJ
and jKJ couplings. The net effect due to the triangular con-
ditions on the angular momenta is that the L�K�J-multiplet
levels become the two-level labels 1� 1

2 �1 and 1� 3
2 �1, while the

�jK�J-multiplet levels become the three-level labels � 1
2

3
2 �1,

� 3
2

1
2 �1, and � 3

2
3
2 �1. However, the � 1

2
3
2 �1 and � 3

2
1
2 �1 states have

the same transition matrix element, and because the energy
level of the multiplet � 3

2
1
2 �1 is juxtaposed to that of � 3

2
3
2 �1

these two blend together to essentially give a two-level struc-

ture that may be characterized as � 1
2

3
2 �1 and � 3

2 , 1
2

3
2 �1 originat-

ing from p1/2 and p3/2 spin-orbit splitting of the 2p state. As
a consequence, the pair of levels 1� 1

2 �1, 1� 3
2 �1 in LKJ cou-

pling for Sc, Ti, and V, and the pair of levels � 1
2

3
2 �1, � 3

2 , 1
2

3
2 �1

in jKJ coupling for Cr to Ni are to be identified with the
observed L2,3 levels in the transition metals Sc through Ni.
These two pairs of multiplets and their corresponding transi-
tion amplitudes are calculated and the results are shown in
Fig. 7.
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FIG. 3. The angular-momentum graph in LK coupling for cal-
culating the excitation amplitude for Sc, Ti, and V.
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FIG. 4. The angular-momentum graph in jK coupling for calcu-
lating the excitation amplitude for Cr to Ni.
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IV. RESULTS AND DISCUSSION

Without spin-orbit interactions the multiplets in LKJ cou-
pling are degenerate in K and J resulting in the two levels
provided by L=1,3. When the spin orbit of the 2p hole is
included, the degeneracy with respect to K is lifted resulting
in four multiplets provided by K=1 /2, 3/2, 5/2, and 7/2. As
we can see from Table II, the spin-orbit parameter of the 3d
electron can be neglected without affecting the positions of
the LK multiplets appreciably. However, its inclusion is nec-
essary to lift the degeneracy with respect to J leading to a
total of eight multiplets comprising of one J=0, two J=1,
two J=2, two J=3, and one J=4. Similar analysis for the
jKJ coupling leads to a total of 12 multiplets. In either case,
the level structure is made up of two clusters originating
from K=1 /2,5 /2 and K=3 /2,7 /2 in LK coupling, and j
=1 /2 and j=3 /2 in jK coupling.

First, we provide some details in the calculated spectra.
The spectra shown in Fig. 2 were obtained using the expres-
sion R�E� from Eq. �1�. The autoionizing intensity expres-
sion RA�E� produced intensity distributions not markedly dif-
ferent from those shown in Fig. 2. This indicates that
characteristic decay events are insignificant in the 2p-edge
EELS. The masking or suppression of these characteristic
events is traceable to the huge numbers for �� in the 2p
→3d excitations. For this reason, the spectra in Fig. 2 may

be characterized as autoionizing with only electrostatic inter-
actions included. What the calculation conveys is that if the
various TMs were prepared under the same experimental

FIG. 6. �Color online� The continuum Slater radial integrals for
Sc, Cr, and Ni with R1, R3=R1,3�Ef2p ;3d3d� �1 hartree=2 Ry
=1 a.u.�.
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FIG. 5. �Color online� The multiplet electron-
energy-loss intensities �in arbitrary units� for Sc
through Ni.
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conditions, the measured resonance peak in Sc would be the
largest followed by Ti and V in that order: the rest of the
TMs would have roughly the same resonance peaks. This
trend should persist even if magnetic effects are included,
relative wise. This is evident if the L3 resonance is examined
in either Figs. 5 and 7. Figure 5 shows the relative intensities
for the TMs when all the multiplet levels are included. For
Cr to Ni, we have two distinct broadened structures that may
be characterized with the L3 and L2 edges. For Sc, Ti, and V
on the other hand, not only are the L3 and L2 resonances
narrower but each one has some associated shoulders with
the L2 resonance less intense compared with the L3 reso-
nance. If, however, the dipole approximation is invoked, we
then have the picture of the spectra for the various TMs in
Fig. 7. In Fig. 7, we observe that the L3 resonance peak is
larger than the L2 peak and the ratio L3 /L2 of the resonance
peaks is of the order of 1.41 for all the TMs. Here we see the

same trend in the resonance peaks of the L3 structure just as
those in Fig. 2. To make it easier for possible future experi-
mental comparison with the theoretical data, we have re-
ported the 2p→3d relative resonance peak values from Fig.
2 and the corresponding L3 resonance peaks from Fig. 7 in
Table III.

L2,3 EELS measurements have been reported by Leapman
et al.14 for metallic Ti, Cr, Fe, and Ni. Similar measurements
have been reported by Lozzi et al.22 for Cr, and Hitchcock
and Teng23 for Ni. The data in Refs. 14 and 22 for Cr and
Refs. 14 and 23 for Ni agree. The theoretical data for the
spectra using the dipole approximation in Fig. 7 are in good
agreement with the measurements for Cr, Fe, and Ni. In the
case of Ti, the measurement of Ref. 14 indicates that the L3
resonance peak is smaller than the L2 peak. This picture is
confirmed by photoabsorption measurements by Ref. 24.
However, the theoretical calculation predicts the opposite:
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FIG. 7. �Color online� The multiplet electron-
energy-loss intensities �in arbitrary units� in the
dipole approximation for Sc to Ni.

TABLE III. The resonance peak values extracted from Figs. 2 and 7 for the L3 structure. These are labeled
respectively as ResPeak1 and ResPeak3.

Sc Ti V Cr Mn Fe Co Ni

ResPeak1 1137.6 966.6 370.7 248.3 217.4 316.7 316.7 316.7

ResPeak3 13.47 9.89 6.30 3.03 2.80 2.93 3.01 2.85
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the one presented here for Ti is in accord with theoretical
density-functional theory �DFT�–based photoabsorption
spectra calculation using linearized augmented plane wave
�APW� method that predicts the L3 resonance peak larger
than the L2 peak.25 Since the APW method exploits the itin-
erant character of the 3d state, the discrepancy between the
theoretical calculations and measurement cannot be attrib-
uted to lack of using a Bloch wave function in the case of the
present atomic-based calculations. Perhaps some of the sug-
gestions made in Sec. V might be the answer in rectifying the
theoretical calculations to match the experimental data.

Soft x-ray appearance potential spectroscopy �SXAPS� is
a technique in which surfaces of solids are bombarded with
electrons of energy E. If the primary electron energy E is
adequate to excite a core electron, then in the de-excitation
process photons are emitted. The emitted photon intensity is
measured as a function of E. Apart from the fact that the
dipole matrix element between the core and optical electrons
�here, �2p�r cos ��3d�� enter the expression for the excitation
amplitude,26 and because the dipole selection rule is valid in
SXAPS, this makes the dipole approximation results pre-
sented here suitable for comparison with L-shell SXAPS in
the TMs. In fact the results in Fig. 7 for Sc to Ni compare
very well with the SXAPS measurements by Park and
Houston.27 In light of the good qualitative agreement be-
tween the dipole approximation results in Fig. 7 and the
available measurements, we are led to conclude that L-shell
electron excited spectra obey the dipole selection rules, thus
validating the conclusions arrived at by Saldin and Ueda.9

Once a core electron is excited in either EELS or in XAS,
the line broadening of the created core hole emanates mainly
from two decay processes, namely, autoionization and char-
acteristic or Auger. In XAS the absorption line strengths are
due to the dipole operator and in EELS, the scattering line
strengths are due to Coulomb interactions. It is, therefore,
expected that the absorption spectral widths in XAS would
be similar to the scattering cross section widths in EELS.
From this perspective, the calculated L2,3 spectra in the
present work may be compared with XAS data in the litera-
ture. In fact, de Groot28 gave a comprehensive review of
XAS and dichroism of the transition metals and their com-
pounds, replete with experimental data and various theoreti-
cal approaches, and the reader is referred to the article and
the references therein for details. In particular, the works of
Thole and van der Laan29 and Waddington et al.30 are se-
lected for discussion because �1� they contain data for the
branching ratios of all the systems considered in this paper,
and �2� their theoretical approaches have some fundamental
tenets with the approach in this paper. In this paper, an
atomic multiplet theory is used to describe the L2,3 spectra in
the solid. Perhaps the weakest point of the paper is that the
3d state in the solid is represented by a quasiatomic state via
a 3d-MCHF wave function. However, since the mere nature of
the MCHF code includes some correlations of the 4s state,
some itinerant electronic features of the solid such as the
electron s and p states are included but certainly not as ideal
as a Bloch-type representation of the 3d state.

Thole and van der Laan29 also used an atomic multiplet
theory, but incorporates the solid state environment via a
ligand field theory that had been proposed earlier.31–34 Based

on this general approach, they formulated rules that allowed
for the direct calculation of the branching ratio of the white
lines in the transition metals and their compounds without
resorting to complicated crystal-field calculations. The gen-
eral trend in their calculation is a separation of the branching
ratio into two parts in the 3d transition metals: the high-spin
and low-spin values �in the crystal-field terminology� at the
high end of the dn occupancy �n=4–8� with the high-spin
values larger than the low-spin values. Both values then de-
crease gradually to converge to the same values for the low
end of the dn occupancy �n=1–3�. An observation made in
their analysis is that for the 3d transition metals, the crystal-
field effects may be neglected with little effect on the deter-
mination of the branching ratio.

Branching ratio calculations in XAS for L2,3 white line
have been reported by Waddington et al.30 using the atomic
multiconfiguration Dirac-Fock �MCDF� code of Grant et al.35

to calculate atomic wave functions, and a modified version
of the transition-rate code used by Dyall and Grant36 to de-
termine the line strengths. The calculation of the multiplets
was carried in the j j-coupling limit, and they used a
3d-MCDF wave function for the itinerant 3d state justifying
its usage on the basis that the d wave function is relatively
localized and the d band being narrow. The results of their
L3 :L2 peak ratios for the 3d transition metal atoms and ions
have been compared with different measurements and theo-
retical calculations. For this reason, no comparison with
those data will be made here. Instead, the results from the
present calculation will be compared with those of Wadding-
ton et al.30 From their L3 :L2 peak ratios, I have calculated
the peak-height branching ratio defined as H3 / �H2+H3� in-
dicated by the WLTR legend in Fig. 8. The data for Sc, Ti, V,
Cr3+, Mn2+, Fe2+, Co2+, and Ni2+ from Ref. 30 were used.
The corresponding peak-height branching ratio extracted
from Fig. 7 is shown in Fig. 8 as the peak-height branching
ratio �BRH� legend. Also shown in Fig. 8 as the integrated
area branching ratio �BRA� legend is the integrated area
branching ratio defined as I�L3� / �I�L2�+ I�L3��. The arrow on
the right side of Fig. 8 indicates the statistical value 2/3 for
the p3/2 , p1/2 states. As was pointed out in Ref. 30, measur-
ing the change in the ratio of the areas can give different
results in those areas where the spectra have different mani-
folds. In determining I�L3� and I�L2�, the continuum back-
ground of the spectra was first subtracted and each manifold
fitted with a Gaussian such that the full width at half maxi-
mum �FWHM� of the manifold and the Gaussian distribution
were the same. With the exception of Sc, we find that both
the peak height and the integrated branching ratios are below
the statistical value, and the values are not that much differ-
ent from one another. In the case of the calculated values
using the data from Ref. 30, Sc and Ti are below the statis-
tical value while V and Cr3+ are almost at the statistical
value, but Mn2+, Fe2+, Co2+, and Ni2+ are above the statisti-
cal value. Since the integrated branching ratio for Sc, Ti, and
V are about the same as the peak-height branching ratio of
Ref. 30, one is led to suspect that that the larger values for
Cr3+, Mn2+, Fe2+, Co2+, and Ni2+ originate from the ioniza-
tion.

There should somehow be a connection between the for-
mulation in Sec. II without magnetic interactions and Sec. III
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with magnetic interactions. A possible way to establish this
connection is through the integrated areas I�2p� for the
2p-edge spectra in Fig. 2 and I�L3� in Fig. 7. Since the line
strengths are based on two different coupling limits, it is
natural to separate the analysis into two groups comprising
the low-end 3d-occupancy systems �Sc, Ti, and V� and the
high-end 3d-occupancy systems �Cr, Mn, Fe, Co, and Ni�. In
each group, the system with the largest integrated area is
normalized to unity, and the other areas are determined rela-
tive to these. In the low-end group it is Sc, and in the high-
end group it is Co. The results of the calculation are repre-
sented by the NIA2p-legend for the 2p-edge spectra, and the
NIL3-legend for the L3-edge spectra. Apart from V on the
low-end systems, and Mn on the high-end systems, the gen-
eral trend is one of a gradual decrease for the low-end group,
about the same at Cr, and a gradual increase for the high-end
group.

V. CONCLUSIONS

The 2p-edge excitation spectra in the 3d transition metals
have been treated using many-body perturbation theory that
led to a generalization of the Fano asymmetric line shape
expression. Under certain limiting conditions,20 this general-
ized Fano expression in Eq. �1� reduces to the familiar Fano
asymmetric formula I���= ��+q�2 / ��2+1� or I���= ��
+q�� / ��2+1� for the retention of only the ring or ladder dia-
grams, respectively, in the perturbation. Magnetic effects
were excluded in the treatment. With the inclusion of mag-
netic effects, the Bethe-Born theory was invoked, and the
line strengths for Sc, Ti, and V were calculated in the LK
coupling limit, while the line strengths for Cr, Mn, Fe, Co,

and Ni were calculated in the jK coupling limit. With the
retention of only dipole contribution to the Coulomb excita-
tion amplitude, the calculated spectra separate into two mani-
folds that are traceable to the 2p3/2�L3� and 2p1/2�L2� edges.
The calculated branching ratio of the white lines shows an
almost uniform systematic trend but whose values are below
the statistical value of 2/3, and compares well with calcula-
tions based on j j coupling. The calculations demonstrate that
LK and jK couplings provide alternative routes to intermedi-
ate and j j couplings, and other theoretical models for the
discussion of core-level excitation spectra in the intermediate
energy region.

The calculations, however, can be improved upon if the
following additional considerations are factored in:

�1� Magnetic effects should be included in the perturba-
tion approach in Sec. II to make it possible to directly com-
pare with L2,3 measurements and other theoretical models.

�2� To realistically describe the solid state, the 3d state
will have to be represented by a Bloch-type wave function or
one that takes into account the band structure of the s and d
states.

�3� Only the optical d electron was included in the p5dn+1

configuration to determine the multiplet splitting. The conse-
quence of this is that only autoionization decay broadening is
included in the calculations. To include characteristic decay
broadening, the other dn electrons will have to be considered
as well. This would certainly affect the spectral linewidths
and in turn the branching ratio.

�4� Two-hole scattering events are absent in the present
treatment. Inclusion of such events might be necessary to
address satellite and shakeup effects that have been reported
in EELS measurements,14 and which are necessary in
energy-loss near-edge structure �ELNES� studies.37,38

The analysis presented here can be instructive for future
studies in the M-shell spectra of the rare-earth metals, and in
particular, to investigate the breakdown of the dipole ap-
proximation that has been reported in the light
lanthanides.16,17

APPENDIX: ELECTROSTATIC AND SPIN-ORBIT
INTERACTION MATRIX ELEMENTS IN LK AND jK

COUPLINGS

The angular-momentum graphical techniques described in
the book by Lindgren and Morrison39 are used in determin-
ing the diagonal energy matrices in which the LK- and
jK-coupled configuration states, the two-body direct and ex-
change Coulomb interactions, and the single-body spin-orbit
interactions are set up, coupled, and evaluated using the
theorems of Jucys et al.40 The final expressions in LK cou-
pling are

�Edir�L�K�J� = ���ll��L,s�K,s�,J��r12
−1�dir���ll��L,s�K,s�,J�

= �
k

�− 1�l�l,l��� l k l

0 0 0
��l� k l�

0 0 0
�


� l l k

l� l� L
�Fk�nl,n�l�� , �A1�

FIG. 8. �Color online� The branching ratio �BR� of the 3d tran-
sition metals as described in the text. BRA legend �integrated BR
from the present work�; BRH legend �peak-height BR from the
present work�; NIL3 legend �integrated normalized and relative
L3-edge area�; NIA2p legend �integrated normalized and relative
2p-edge area�; WLTR-legend �peak-height BR calculated with data
from Ref. 30�.
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�Eexch�L�K�J� = ���ll��L,s�K,s�,J��r12
−1�exch���ll��L,s�K,s�,J�

= �− 1�L�
k

�l,l��


� l k l�

0 0 0
�2� l l� L

l l� k
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nl�L�K�J� = ���ll�L,s�K,s�,J�hso�nls����ll�L,s�K,s�,J�

= �− 1�K+s+l+l�+1�L��L L 1

s s K
�


�nl��3/2�l�l + 1��2l + 1��1/2, �A3�

�Eso
n�l��L�K�J� = ���ll��L,s�K,s�,J�hso�n�l�s��


���ll��L,s�K,s�,J� = �− 1�J+l+l�+1�L,K�


�K K 1

L L s
��L L 1

l� l� l
��n�l���3/2�l��l�

+ 1��2l� + 1��1/2. �A4�

The corresponding results in jK coupling are

�Edir��jK�J� = ���ls�j,l��K,s�,J��r12
−1�dir���ls�j,l��K,s�,J�
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k
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